Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 234

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Validation of the hybrid turbulence model in detailed thermal-hydraulic analysis code SPIRAL for fuel assembly using sodium experiments data of 37-pin bundles

Yoshikawa, Ryuji; Imai, Yasutomo*; Kikuchi, Norihiro; Tanaka, Masaaki; Ohshima, Hiroyuki

Nuclear Technology, 210(5), p.814 - 835, 2024/05

 Times Cited Count:0

In the study of safety enhancement on advanced sodium-cooled fast reactor, it is essential to clarify the thermal-hydraulics under various operation conditions in a fuel assembly (FA) with the wire-wrapped fuel pins to assess the structural integrity of the fuel pin. A finite element thermal-hydraulics analysis code named SPIRAL has been developed to analyze the detailed thermal-hydraulics phenomena in a FA. In this study, the numerical simulations of the 37-pin bundle sodium experiments at different Re number conditions, including a transitional condition between laminar and turbulent flows and turbulent flow conditions, were performed to validate the hybrid turbulence model equipped in SPIRAL. The temperature distributions predicted by SPIRAL was consistent with those measured in the experiments. Through the validation study, the applicability of the hybrid turbulence model in SPIRAL to thermal-hydraulic evaluation of sodium-cooled FA in the wide range of Re number was confirmed.

JAEA Reports

Development of analytical approach of source term for accident of evaporation to dryness by boiling of reprocessed high level liquid waste

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Research 2023-001, 26 Pages, 2023/05

JAEA-Research-2023-001.pdf:1.61MB

An accident of evaporation to dryness by boiling of high-level radioactive liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into the atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. To resolve this issue, an analytical approach has been developed using computer simulation programs to assess the radioactive source term from those facilities. The proposed approach consists analyses with three computer programs. At first, the simulation of boiling behavior in the HLLW tank is conducted with SHAWED code. Next step, the thermal-hydraulic behavior in the facility building is simulated with MELCOR code based on the results at the first step simulation such as flowed out mixed steam flow rate, temperature and volatilized Ru from the tank. The final analysis step is carried out for estimating amount of released radioactive materials with SCHERN computer code which simulates chemical behaviors of nitric acid, nitrogen oxide and Ru based on the condition also simulated MELCOR. Series of sample simulations of the accident at a hypothetical typical facility are presented with the data transfer between those codes in this report.

Journal Articles

CFD analysis on stratification dissolution and breakup of the air-helium gas mixture by natural convection in a large-scale enclosed vessel

Hamdani, A.; Abe, Satoshi; Ishigaki, Masahiro; Shibamoto, Yasuteru; Yonomoto, Taisuke

Progress in Nuclear Energy, 153, p.104415_1 - 104415_16, 2022/11

 Times Cited Count:3 Percentile:68.71(Nuclear Science & Technology)

Journal Articles

The OECD/NEA Working Group on the Analysis and Management of Accidents (WGAMA); Advances in codes and analyses to support safety demonstration of nuclear technology innovations

Nakamura, Hideo; Bentaib, A.*; Herranz, L. E.*; Ruyer, P.*; Mascari, F.*; Jacquemain, D.*; Adorni, M.*

Proceedings of International Conference on Topical Issues in Nuclear Installation Safety; Strengthening Safety of Evolutionary and Innovative Reactor Designs (TIC 2022) (Internet), 10 Pages, 2022/10

Journal Articles

Effect of fault activation on the hydraulic connectivity of faults in mudstone

Ono, Hirokazu; Ishii, Eiichi

Geomechanics for Energy and the Environment, 31, p.100317_1 - 100317_9, 2022/09

 Times Cited Count:5 Percentile:61.08(Energy & Fuels)

Journal Articles

Experimental study of liquid spreading and atomization due to jet impingement in liquid-liquid systems

Yamamura, Sota*; Fujiwara, Kota*; Honda, Kota*; Yoshida, Hiroyuki; Horiguchi, Naoki; Kaneko, Akiko*; Abe, Yutaka*

Physics of Fluids, 34(8), p.082110_1 - 082110_13, 2022/08

 Times Cited Count:2 Percentile:41.08(Mechanics)

Liquid spreading and atomization due to jet impingement in liquid-liquid systems are considered to be crucial for understanding the cooling behavior of high-temperature molten material in a shallow water pool. This phenomenon takes place when a liquid jet enters a pool filled with other immiscible liquid. The jet spreads radially after impinging on the floor while forming a thin liquid film and atomizing droplets. In this paper, we explain the result to quantify the unsteady three-dimensional behavior of the spreading jet by the employment of 3D-LIF measurements and 3-dimensional reconstruction. Under high flow velocity conditions, the phenomena of hydraulic jump and atomization of the liquid film occurred along with the spreading. To evaluate the spreading behavior, a comparison of the jump radius position of the liquid-liquid system as the representative value was made with the one calculated by the existing theory of a gas-liquid system. As the result, the spreading of the liquid film in the liquid-liquid system was suppressed compared with that in the gas-liquid system. Furthermore, the PTV method was successfully used to measure the velocity boundary layer and velocity profile in the liquid film, which are important factors that affect the spreading mechanism of the liquid film. These results revealed that in liquid-liquid systems, shear stress at the liquid-liquid interface causes a decrease in the flow velocity and suppressed the development of the velocity boundary layer. Also, to evaluate the atomization behavior, the number and diameter distribution of the droplets were measured from the acquired 3-dimensional shape data of the jet. As the result, the number of droplets increased with the flow velocity. Based on these results, we concluded that the spreading of the liquid film is affected by such atomization behavior.

JAEA Reports

Analysis of risk reduction effect of supposed steam condenser implementation as accident measure for accident of evaporation to dryness by boiling of reprocessed high level liquid waste

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Research 2021-013, 20 Pages, 2022/01

JAEA-Research-2021-013.pdf:2.35MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. An idea has been proposed to implement a steam condenser as an accident countermeasure. This measure is expected to prevent nitric acid steam diffusing in facility building and to increase gaseous Ru trapping ratio into condensed water. A simulation study has been carried out with a hypothetical typical facility building to analyze the efficiency of steam condenser. In this study, SCHERN computer code simulates chemical behaviors of Ru in nitrogen oxide, nitric acid and water mixed vapor based on the conditions obtained from simulation with thermal-hydraulic computer code MELCOR. The effectiveness of steam condenser has been analyzed quantitively in preventing mixed vapor diffusion and gaseous Ru trapping effect. Some issues to be solved in analytical model has been also clarified in this study.

Journal Articles

Iterative methods with mixed-precision preconditioning for ill-conditioned linear systems in multiphase CFD simulations

Ina, Takuya*; Idomura, Yasuhiro; Imamura, Toshiyuki*; Yamashita, Susumu; Onodera, Naoyuki

Proceedings of 12th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems ScalA21) (Internet), 8 Pages, 2021/11

 Times Cited Count:1 Percentile:50.67(Computer Science, Software Engineering)

A new mixed-precision preconditioner based on the iterative refinement (IR) method is developed for preconditioned conjugate gradient (P-CG) and multigrid preconditioned conjugate gradient (MGCG) solvers in a multi-phase thermal-hydraulic CFD code JUPITER. In the IR preconditioner, all data is stored in FP16 to reduce memory access, while all computation is performed in FP32. The hybrid FP16/32 implementation keeps the similar convergence property as FP32, while the computational performance is close to FP16. The developed solvers are optimized on Fugaku (A64FX), and applied to ill-conditioned matrices in JUPITER. The P-CG and MGCG solvers with the new IR preconditioner show excellent strong scaling up to 8,000 nodes, and at 8,000 nodes, they are respectively accelerated up to 4.86$$times$$ and 2.39$$times$$ from the conventional ones on Oakforest-PACS (KNL).

JAEA Reports

Analysis of behavior of Ru with nitrogen oxide chemical behavior in accident of evaporation to dryness by boiling of reprocessed high level liquid waste

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Research 2021-005, 25 Pages, 2021/08

JAEA-Research-2021-005.pdf:2.91MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. To resolve this issue, an empirical correlation equation of Ru mass transfer coefficient across the vapor-liquid surface, which can be useful for quantitative simulation of Ru mitigating behavior, has been obtained from data analyses of small-scale experiments conducted to clarify gaseous Ru migrating behavior under steam-condensing condition. A simulation study has been also carried out with a hypothetical typical facility building successfully to demonstrate the feasibility of quantitative estimation of amount of Ru migrating in the facility using the obtained correlation equation implemented in SCHERN computer code which simulates chemical behaviors of nitrogen oxide based on the condition also simulated thermal-hydraulic computer code.

Journal Articles

Development of an integrated computer code system for analyzing irradiation behaviors of a fast reactor fuel

Uwaba, Tomoyuki; Nemoto, Junichi*; Ito, Masahiro*; Ishitani, Ikuo*; Doda, Norihiro; Tanaka, Masaaki; Otsuka, Satoshi

Nuclear Technology, 207(8), p.1280 - 1289, 2021/08

 Times Cited Count:3 Percentile:35.51(Nuclear Science & Technology)

Computer codes for irradiation behavior analysis of a fuel pin and a fuel pin bundle and for coolant thermal hydraulics analysis were coupled into an integrated code system. In the system, each code provides data required by other codes and the analyzed results are shared among them. The system allows for the synthesizing of analyses of thermal, chemical and mechanical behaviors in a fuel subassembly under irradiation. A test analysis was made for a fuel subassembly containing a mixed oxide fuel pin bundle irradiated in a fast reactor. The results of the analysis were presented with transverse cross-sectional images of the fuel subassembly and three-dimensional images of a fuel pin and fuel pin bundle models. For detailed evaluation, various irradiation behaviors of all fuel pins in the subassembly were analyzed and correlated with irradiation conditions.

Journal Articles

Thermal-hydraulics to risk assessment; Roles of thermal-hydraulics simulation to risk assessment

Maruyama, Yu; Yoshida, Kazuo

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 63(7), p.517 - 522, 2021/07

no abstracts in English

Journal Articles

Chapter 18, Moving particle semi-implicit method

Wang, Z.; Duan, G.*; Koshizuka, Seiichi*; Yamaji, Akifumi*

Nuclear Power Plant Design and Analysis Codes, p.439 - 461, 2021/00

Journal Articles

Does fault activation affect the hydraulic disconnectivity of faults in mudstone?

Ono, Hirokazu; Takeda, Masaki; Ishii, Eiichi

Extended abstract of International Conference on Coupled Processes in Fractured Geological Media; Observation, Modeling, and Application (CouFrac 2020) (Internet), 4 Pages, 2020/11

Journal Articles

Poroelastic hydraulic-response of fractured mudstone to excavation in the Horonobe URL; As an indicator of fracture hydraulic-disconnectivity

Ozaki, Yusuke; Ishii, Eiichi; Sugawara, Kentaro*

Extended abstract of International Conference on Coupled Processes in Fractured Geological Media; Observation, Modeling, and Application (CouFrac 2020) (Internet), 4 Pages, 2020/11

We perform the numerical simulation of the response of hydraulic head observed in HDB-6 during the excavation of the Horonobe URL to verify the existence of low effective permeable domain in the subsurface. The low permeable domain as an intact rock due to the low hydraulic fracture connectivity is estimated to exist in the deep domain while the permeability of the shallow domain is relatively high due to the hydraulic fracture connectivity there. Our simulation shows that the observed hydraulic head is affected by the Mandel-Cryer effect due to the hydrogeological structure and the effect for the duration of over years requires the low permeability as an intact rock in the deep domain. These results verify the existence of the low effective permeable domain in the deep subsurface estimated by the previous study.

Journal Articles

The Working group on the analysis and management of accidents (WGAMA); A Historical review of major contributions

Herranz, L. E.*; Jacquemain, D.*; Nitheanandan, T.*; Sandberg, N.*; Barr$'e$, F.*; Bechta, S.*; Choi, K.-Y.*; D'Auria, F.*; Lee, R.*; Nakamura, Hideo

Progress in Nuclear Energy, 127, p.103432_1 - 103432_14, 2020/09

 Times Cited Count:4 Percentile:11.26(Nuclear Science & Technology)

Journal Articles

Preliminary analysis of sodium experimental apparatus PLANDTL-2 for development of evaluation method for thermal-hydraulics in reactor vessel of sodium fast reactor under decay heat removal system operation condition

Ono, Ayako; Tanaka, Masaaki; Miyake, Yasuhiro*; Hamase, Erina; Ezure, Toshiki

Mechanical Engineering Journal (Internet), 7(3), p.19-00546_1 - 19-00546_11, 2020/06

Fully natural circulation decay heat removal systems (DHRSs) are to be adopted for sodium fast reactors, which is a passive safety feature without any electrical pumps. It is required to grasp the thermal-hydraulic phenomena in the reactor vessel and evaluate the coolability of the core under the natural circulation not only for the normal operating condition but also for severe accident conditions. In this paper, the numerical results of the preliminary analysis for the sodium experimental condition with the PLANDTL-2 are discussed to establish an appropriate numerical models for the reactor core including the gap region among the subassemblies and the DHX. From these preliminary analyses, the characteristics of the thermal-hydraulics behavior in the PLANDTL-2 to be focused are extracted.

Journal Articles

CFD analysis of the CIGMA experiments on the heated JET injection into containment vessel with external surface cooling

Hamdani, A.; Abe, Satoshi; Ishigaki, Masahiro; Shibamoto, Yasuteru; Yonomoto, Taisuke

Proceedings of 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-18) (USB Flash Drive), p.5463 - 5479, 2019/08

Journal Articles

Effect of coolant water temperature of ECCS on failure probability of RPV

Katsuyama, Jinya; Masaki, Koichi; Lu, K.; Watanabe, Tadashi*; Li, Y.

Proceedings of 2019 ASME Pressure Vessels and Piping Conference (PVP 2019) (Internet), 7 Pages, 2019/07

For reactor pressure vessel (RPV) of pressurized water reactor, temperature of coolant water in emergency core cooling system (ECCS) may have influence on the structural integrity of RPV during pressurized thermal shock (PTS) events. Focusing on a mitigation measure to raise the coolant water temperature of ECCS for aged RPVs in order to reduce the effect of thermal shock due to PTS events, we performed thermal hydraulic analyses and probabilistic fracture mechanics analyses by using RELAP5 and PASCAL4, respectively. From the analysis results, it was shown that the failure probability of RPV was dramatically reduced when the coolant temperature in accumulator as well as high and low pressure injection systems (HPI/LPI) was raised, although raising the coolant temperature of HPI/LPI only did not cause reduction in the failure probability.

Journal Articles

Preliminary analysis of sodium experimental apparatus PLANDTL-2 for development of evaluation method for thermal hydraulics in reactor vessel of sodium fast reactor under decay heat removal system operation condition

Ono, Ayako; Tanaka, Masaaki; Miyake, Yasuhiro*; Hamase, Erina; Ezure, Toshiki

Proceedings of 27th International Conference on Nuclear Engineering (ICONE-27) (Internet), 7 Pages, 2019/05

Decay heat removal system (DHRS) by using the natural circulation without depending on the pump as the mechanical equipment is recognized as one of the most effective methodologies for the sodium-cooled fast reactor from the viewpoint of the safety enhancement. In this paper, the numerical simulation results of the preliminary analysis for the sodium experiment with the apparatus of PLANDTL-2, in which the core and the upper plenum with a dipped-type direct heat exchanger (DHX) were modeled, were discussed, in order to establish appropriate numerical models for the reactor core including the gap region among the subassemblies and the DHX.

Journal Articles

A Method for estimating the highest potential hydraulic conductivity in the excavation damaged zone in mudstone

Aoyagi, Kazuhei; Ishii, Eiichi

Rock Mechanics and Rock Engineering, 52(2), p.385 - 401, 2019/02

 Times Cited Count:16 Percentile:67.51(Engineering, Geological)

Excavation of deep underground openings induces permeable fractures around the opening due to stress redistribution. Such a zone is called excavation damaged zone (EDZ). In a high-level radioactive waste disposal project, the EDZ might provide pathways for the migration of radionuclides around the facility. Thus, this study focused on the development of a method for estimating the highest potential hydraulic conductivity in the EDZ around a gallery in the Horonobe Underground Research Laboratory, Japan. Borehole televiewer surveys, rock core observations, and hydraulic tests were undertaken to investigate the extent and magnitude of hydraulic conductivity in the EDZ around the gallery. The observed extent of the EDZ shows good agreement with the EDZ estimated from hydro-mechanical coupling analysis. The measured hydraulic conductivities of the EDZ are within the range of those based on the Mean Stress Index (MSI), which is defined as the ratio of the effective mean stress derived from numerical analyses to the tensile strength of intact rock. Given that the rock mass is relatively homogeneous and artificial damage (e.g., blasting-induced damage) can be neglected, as in the Horonobe Underground Research Laboratory, the MSI model is likely to be applicable in estimating the highest potential hydraulic conductivity in the EDZ.

234 (Records 1-20 displayed on this page)